## USN

## Second Semester M.Tech. Degree Examination, June/July 2015 Low Power VLSI Design

Time: 3 hrs. Max. Marks: 100

## Note: Answer any FIVE full questions.

- 1 a. Derive the power dissipation equation in digital CMOS circuit.
  - b. Explain the two major sources of leakage current in CMOS device.

c. A 32 bit off-chip bus operating at 5 V and 66 MHz clock rate is driving a capacitance of 25 pF/bit. Each bit is estimated to have a toggling probability of 0.25 at each clock cycle. What is the power dissipation in operating the bus? (04 Marks)

- 2 a. Explain basic principles of low power VLSI design. (06 Marks)
  - b. Draw the energy band diagram of MIS diode. What are the factors on which the threshold voltage  $V_T$  depends on? (08 Marks)
  - c. Explain the impact of technology scaling and innovation trends for low power devices.

(06 Marks)

- 3 a. List the advantages and limitation of SPICE power analysis.
  - b. Explain the event-driven gate level power simulation technique.
- (06 Marks) (07 Marks)
- c. Drive the expression for number of samples 'N' required for stopping criteria in Monte-Carlo simulation. (07 Marks)
- 4 a. Explain the propagation of statistical quantities in probabilistic power analysis with an example. (08 Marks)
  - b. Define signal entropy. Explain the power estimation of combinational logic using signal entropy. (08 Marks)
  - c. Find the output static probability of y = a + bc by using Shannon's decomposition method. (04 Marks)
- 5 a. Explain bus invertiencoding with an example.

- (08 Marks) (08 Marks)
- b. Explain gate reorganization using basic transformation operators.
- c. Explain the architecture of bus invert encoding. (04 Marks)
- 6 a. What is pre-computation? Explain the concept of pre-charging in an inverter and comment on its power dissipation. (10 Marks)
  - b. With a neat diagram, explain the working of a 8-bit Wallace multiplier. What are its advantages? (10 Marks)
  - a. Explain the chip and package co-design of clock network with relevant block diagram.

(10 Marks)

- b. What are the CAD tools available at different abstraction levels? Explain with a design flow diagram for power optimization. (10 Marks)
- **8** Write short notes on:
  - a. Need for low power VLSI design
  - b. Zero skew versus tolerable skew
  - c. Low power SRAM
  - d. Signal gating

(20 Marks)